Automated classification of H MRS brain tumour spectra: a linear discriminant analysis comparison of LCModel quantification versus complete spectra

نویسندگان

  • K. S. Opstad
  • C. Ladroue
  • J. R. Griffiths
  • F. A. Howe
چکیده

K. S. Opstad, C. Ladroue, J. R. Griffiths, F. A. Howe Cancer Research UK Biomedical Magnetic Resonance Research Group, St. George's Hospital Medical School, London, United Kingdom Introduction In this study we investigated the use of pattern recognition techniques, using leave-one-out linear discriminant analysis (LDA) of single voxel H MRS, to distinguish metastases from glioblastomas; so far unachieved by current pattern recognition studies. A comparison is made of i) LCModel quantification versus the whole spectra, ii) the effects of combining PRESS and STEAM data versus STEAM data alone; and iii) the effects of using principal component analysis (PCA) versus manually chosen metabolite concentrations from the LCModel quantification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of brain tumours using short echo time 1H MR spectra.

The purpose was to objectively compare the application of several techniques and the use of several input features for brain tumour classification using Magnetic Resonance Spectroscopy (MRS). Short echo time 1H MRS signals from patients with glioblastomas (n = 87), meningiomas (n = 57), metastases (n = 39), and astrocytomas grade II (n = 22) were provided by six centres in the European Union fu...

متن کامل

Brain tumor classification based on long echo proton MRS signals

There has been a growing research interest in brain tumor classification based on proton magnetic resonance spectroscopy (1H MRS) signals. Four research centers within the EU funded INTERPRET project have acquired a significant number of long echo 1H MRS signals for brain tumor classification. In this paper, we present an objective comparison of several classification techniques applied to the ...

متن کامل

The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification.

This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of th...

متن کامل

Application of ICA to realistically simulated 1H-MRS data

INTRODUCTION (1)H-MRS signals from brain tissues capture information on in vivo brain metabolism and neuronal biomarkers. This study aims to advance the use of independent component analysis (ICA) for spectroscopy data by objectively comparing the performance of ICA and LCModel in analyzing realistic data that mimics many of the known properties of in vivo data. METHODS This work identifies k...

متن کامل

1H-MRS and 18FDG PET: Metabolism in head and neck cancers

Figure 2: Analysis output of localized H-MRS spectra from the right node of patient 9. The in vivo spectrum (thin grey curve) has been estimated with the LCModel output (thick red curve), and the difference of these spectra (residue) is plotted at the top. Cho, choline. Figure 3: Scatterplot displaying Cho/W concentrations (arbitrary units) as function of FDG uptake (g/mL). The linear regressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002